skip to main content


Search for: All records

Creators/Authors contains: "Kang, Yun"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available October 1, 2024
  2. Free, publicly-accessible full text available July 4, 2024
  3. In this research, we study the impacts of the traceable mobility in a two-patch environment when the population in each patch exhibits strong Allee effects. Traveling individuals are traced across patches by budgeting the average time spent in each patch while keeping their place of residency. Particularly, we focus on the impact that the effective population (residents and visitors) produces on regional dynamics.Our results show that low mobility across regions produces simple dynamics, where orbits converge to single or double extinction, or to a coexistence steady state. We derive mobility conditions under which an endangered population may benefit of the presence of a visitant one and avoid extinction -- the rescue effect. Nonetheless, increments in the visiting population would also lead the resident population to extinction -- the induced extinction effect.

     
    more » « less
    Free, publicly-accessible full text available June 28, 2024
  4. Free, publicly-accessible full text available July 1, 2024
  5. The quarantine strategy plays a crucial role in the prevention and control of infectious disease. In this paper, a two-layer network model coupling the transmission of infectious diseases and the dynamics of human behavior based on game theory is proposed. The basic reproduction number of the infectious disease in our proposed model is obtained by the next-generation matrix method and the stability of the disease-free equilibrium is analyzed. Theoretical results show that the spread of infectious diseases can be controlled when the voluntary quarantined individuals reach a certain proportion. The sensitivities of the parameters are analyzed by simulations, and the results show that increasing propaganda can directly accelerate quarantine, and reducing the relative cost of quarantine has a significant effect on preventing the infectious diseases. Increasing the detection rate will lead to overestimating the proportion of undiagnosed infected individuals, and can also promote individuals to quarantine.

     
    more » « less
  6. The variation of nutrient supply not only leads to the differences in the phytoplankton biomass and primary productivity but also induces the long-term phenotypic evolution of phytoplankton. It is widely accepted that marine phytoplankton follows Bergmann's Rule and becomes smaller with climate warming. Compared with the direct effect of increasing temperature, the indirect effect via nutrient supply is considered to be an important and dominant factor in the reduction of phytoplankton cell size. In this paper, a size-dependent nutrient-phytoplankton model is developed to explore the effects of nutrient supply on the evolutionary dynamics of functional traits associated with phytoplankton size. The ecological reproductive index is introduced to investigate the impacts of input nitrogen concentration and vertical mixing rate on the persistence of phytoplankton and the distribution of cell size. In addition, by applying the adaptive dynamics theory, we study the relationship between nutrient input and the evolutionary dynamics of phytoplankton. The results show that input nitrogen concentration and vertical mixing rate have significant effects on the cell size evolution of phytoplankton. Specifically, cell size tends to increase with the input nutrient concentration, as does the diversity of cell sizes. In addition, a single-peaked relationship between vertical mixing rate and cell size is observed. When the vertical mixing rate is too low or too high, only small individuals are dominant in the water column. When the vertical mixing rate is moderate, large individuals can coexist with small individuals, so the diversity of phytoplankton is elevated. We predict that reduced intensity of nutrient input due to climate warming will lead to a trend towards smaller cell size and will reduce the diversity of phytoplankton.

     
    more » « less
  7. In this paper, we investigate the dynamical behavior for a hybrid non-autonomous predator–prey system with Holling Type II functional response, impulsive effects and generalist predator on time scales, where our proposed model commutes between a continuous-time dynamical system and discrete-time dynamical system. By using comparison theorems, we first study the permanence results of the proposed model. Also, we established the uniformly asymptotic stability for the almost periodic solution of the proposed model. Finally, in the last section, we provide some examples with numerical simulation. 
    more » « less
  8. Social insect colonies’ robust and efficient collective behaviors without any central control contribute greatly to their ecological success. Colony migration is a leading subject for studying collective decision-making in migration. In this paper, a general colony migration model with Hill functions in recruitment is proposed to investigate the underlying decision making mechanism and the related dynamical behaviors. Our analysis provides the existence and stability of equilibrium, and the global dynamical behavior of the system. To understand how piecewise functions and Hill functions in recruitment impact colony migration dynamics, the comparisons are performed in both analytic results and bifurcation analysis. Our theoretical results show that the dynamics of the migration system with Hill functions in recruitment differs from that of the migration system with piecewise functions in the following three aspects: (1) all population components in our colony migration model with Hill functions in recruitment are persistent; (2) the colony migration model with Hill functions in recruitment has saddle and saddle-node bifurcations, while the migration system with piecewise functions does not; (3) the system with Hill functions has only equilibrium dynamics, i.e. either has a global stability at one interior equilibrium or has bistablity among two locally stable interior equilibria. Bifurcation analysis shows that the geometrical shape of the Hill functions greatly impacts the dynamics: (1) the system with flatter Hill functions is less likely to exhibit bistability; (2) the system with steeper functions is prone to exhibit bistability, and the steady state of total active workers is closer to that of active workers in the system with piecewise function. 
    more » « less
  9. Abstract

    Technologically critical rare-earth elements are notoriously difficult to separate, owing to their subtle differences in ionic radius and coordination number1–3. The natural lanthanide-binding protein lanmodulin (LanM)4,5is a sustainable alternative to conventional solvent-extraction-based separation6. Here we characterize a new LanM, fromHansschlegelia quercus(Hans-LanM), with an oligomeric state sensitive to rare-earth ionic radius, the lanthanum(III)-induced dimer being >100-fold tighter than the dysprosium(III)-induced dimer. X-ray crystal structures illustrate how picometre-scale differences in radius between lanthanum(III) and dysprosium(III) are propagated toHans-LanM’s quaternary structure through a carboxylate shift that rearranges a second-sphere hydrogen-bonding network. Comparison to the prototypal LanM fromMethylorubrum extorquensreveals distinct metal coordination strategies, rationalizingHans-LanM’s greater selectivity within the rare-earth elements. Finally, structure-guided mutagenesis of a key residue at theHans-LanM dimer interface modulates dimerization in solution and enables single-stage, column-based separation of a neodymium(III)/dysprosium(III) mixture to >98% individual element purities. This work showcases the natural diversity of selective lanthanide recognition motifs, and it reveals rare-earth-sensitive dimerization as a biological principle by which to tune the performance of biomolecule-based separation processes.

     
    more » « less